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Abstract—Global localization is a fundamental capability en-
abling long-term and drift-free robot navigation. This paper
presents an outdoor global localization method based on robust
registration of open-set segment maps. Our method detects and
tracks segments using open-set image segmentation models that
enable direct generalization to unseen environments. To perform
global localization under the high outlier regimes that are typical
of natural/outdoor environments, we formulate a registration
problem between small submaps of 3D segments and solve for the
correspondences using a graph-theoretic global data association
approach. Further, to guide registration in highly noisy or
ambiguous scenarios, we propose novel ways of incorporating
additional information (e.g., segment attributes and known grav-
ity direction) within the global data association formulation. The
proposed method is evaluated on outdoor datasets recorded by
multiple robots and shown to outperform existing methods in
terms of precision-recall metrics and localization accuracy.

I. INTRODUCTION

Global localization [1] refers to the task of localizing a
robot in a reference map or another robot’s local map (i.e.,
inter-robot loop closure) using onboard measurements and
without any initial guess. It is a cornerstone capability for
drift-free navigation in GPS-denied scenarios including many
natural environments such as forests and underground caves.
However, these natural environments are often characterized
by unstructured geometries and self-similar visual appear-
ances, which lead to significant noise and outliers in onboard
perception and make the association of perceived features in
global localization challenging.

Compared to conventional keypoints extracted from visual
or lidar observations, objects or segment-level representations
offer many advantages for global localization. First, they are
more stable against sensor noise and viewpoint changes: in
comparison, methods based on visual features quickly fail
when scenes are viewed from very different viewpoints [2].
Second, objects and segments are more lightweight and thus
much more efficient to transmit compared to local visual
features in multi-robot applications. SegMatch [3] is an earlier
work that extracts 3D segments from dense lidar maps, and
solves global localization using eigenvalue/shape-based match-
ing and RANSAC [4]. Subsequent works improved on this
framework using learned descriptors [5], semantic information
[6, 7], and an improved feature extraction process [8]. Anken-
bauer et al. [9] present an object-based global localization
method that leverages graph-theoretic data association [10]
as the back-end solver, which is shown to achieve superior
robustness against outlier putative associations. While these
prior works show promising results, their performance in
novel natural environments are limited by their dependence on
domain-specific segmentation or object detection methods that
require manual training and/or careful parameter tuning. To ad-

Fig. 1: Pair of segment submaps matched by two robots traveling
in opposite directions in an off-road environment. The submaps
are shown in different colors (red and blue) together with robot
trajectories. Green edges denote segment-level associations found by
the proposed method, and a subset of these associated segments are
annotated in the corresponding image observations.

dress this issue, recent work [11] proposes to use pre-trained,
open-set foundation models for zero-shot segmentation in
novel environments. However, this approach uses a simple
object representation given by their 3D centroids, which limits
global localization performance in more challenging regimes
when using centroids alone fails, e.g., due to the ambiguity
caused by a small number of objects in the scene or the
symmetry in their spatial configurations.
Contributions. We present a method for performing global lo-
calization in natural environments with high visual ambiguity
resulting from different viewpoints and visually similar scenes
(e.g. as shown in Fig 1). To accomplish this, we present the
following contributions:

1) A pipeline for creating open-set object-based maps using
a single onboard RGB-D camera and FastSAM [12]
for open-set image segmentation in previously unseen
environments. These maps compactly summarize the de-
tailed RGB-D point clouds into sparse representations
consisting of segment location and shape attributes, which
enable efficient and robust global localization.

2) A method extending the graph-theoretic global data as-
sociation method of [10] to incorporate 3D-segment-
level similarity information (e.g., based on shape and
volume) and a gravity-direction prior. Our method implic-
itly guides the solver to correct 3D segment-to-segment
associations in challenging regimes when object centroids
alone are not sufficient for identifying the correct data
association (e.g., due to repetitive geometric structures or
scenes with few distinct objects).

3) Experimental evaluation of the proposed method us-



ing real-world multi-robot navigation datasets in natu-
ral/outdoor environments, demonstrating that our method
outperforms baseline methods in regimes with opposite
viewpoints and challenging visual similarity.

II. PROPOSED APPROACH

A. Open-set object-level mapping
To enable global localization in previously unseen natural

environments, the proposed method constructs segment-level
maps based on high-level features detected by recent zero-shot
open-set segmentation models. The inputs consist of RGB-D
images and robot pose estimates (e.g., provided by a visual-
inertial SLAM system). The images are downsampled and
processed with FastSAM [12] to extract high-level image seg-
ments for each robot. We track the detected segments by com-
puting the Intersection over Union (IoU) between segments
from consecutive keyframes. For each track of the associated
2D segments, we create a corresponding 3D segment in the
robot map by merging the RGB-D point cloud observations
in the local reference frame. We also implement segment
merging by computing IoU in both the projected 2D masks
and 3D volumes to handle cases when the same object gets
segmented into multiple parts. Fig. 1 visualizes portions of two
segment maps constructed by two robots traveling in opposite
directions, together with the correspondences detected by the
proposed approach (shown as green edges).

B. Submap Alignment
To perform global localization, we divide each robot’s

onboard segment map into multiple, potentially overlapping
submaps. We then consider the problem of aligning robot i’s
local submap Mi in robot i’s local frame Fi with robot j’s
map Mj in Fj . We formulate this as a registration problem
where each 3D segment is represented by a 3D point and
feature vector (e.g., volume and shape attributes). Successful
global localization requires that segments in Mi are correctly
associated with segments in Mj , which is a challenging task in
the presence of uncertainty, outliers, and geometric ambiguity.
To this end, we extend the graph-theoretic data association
framework, CLIPPER [10], to tackle segment map registration.
In the following, we first present a brief review of the approach
behind CLIPPER and then describe the proposed extension.
Then, once correspondences between Mi and Mj have been
determined, the relative transformation from Fj to Fi, T̂i

j , can
be found using the closed-form Arun’s method [13].

Preliminaries: Graph-Theoretic Global Data Associa-
tion. CLIPPER first constructs a consistency graph, G, where
each node in the graph is a putative association ap = (pi, pj)
between a segment pi in Mi and a segment pj in Mj . Edges
are created between nodes when associations are geometrically
consistent with each other. Specifically, given two putative
correspondences ap = (pi, pj) and aq = (qi, qj), CLIP-
PER declares that ap and aq are consistent if the distance
between segment centroids in the same map is preserved,
i.e., if d(ap, aq) ≜ | ∥pi − qi∥ − ∥pj − qj∥ | is small. Then,
a weighted edge Ep,q = sa(ap, aq) is added to the graph ac-
cording to sa(ap, aq) = exp

(
− 1

2
d(ap,aq)

2

σ2

)
if d(ap, aq) ≤ ϵ,

where sa(ap, aq) ∈ [0, 1] scores the similarity between two
associations and ϵ and σ are tuneable parameters expressing
bounded noise in the segment point representation.

Given the consistency graph G, a weighted affinity matrix
M is created where Mp,q = sa(ap, aq) and Mp,p = 1, and
CLIPPER determines inlier associations by (approximately)
solving for the densest subset of consistent associations, for-
mulated as the following optimization problem,

max
u∈{0,1}n

u⊤Mu

u⊤u
.

subject to upuq = 0 if Mp,q = 0, ∀p,q,
(1)

where up is 1 when association ap is accepted as an inlier and
0 otherwise. See [10] for more details.

When point registration methods such as CLIPPER are ap-
plied on segment maps, unique challenges are introduced that
are often not faced in other point registration problems (e.g.,
lidar point cloud registration), including dealing with greater
noise in segment centroids (e.g., due to partial observation)
and few inlier segments (e.g., often less than 10) mapped
in both Mi and Mj . These problems combined can lead
to ambiguity when performing segment submap registration,
and we show in Sec. III that CLIPPER often struggles to
determine correct associations when aligning segment maps.
To address these problems, other works have proposed pre-
processing or post-processing methods that leverage additional
information to filter incorrect global localization results. For
instance, in [11] and [14], a putative association is removed
if the difference in size of the associated segments is above a
threshold. Additionally, in the event when the two submaps
share gravity direction (so the true relative transform only
involves rotation around the gravity direction), [11] checks
the roll/pitch angles of the estimated transform T̂i

j in a post-
processing step to remove incorrect registration solutions.

Leveraging Additional Information within CLIPPER. In
comparison to works that explicitly use prior information in
pre-processing or post-processing steps, we propose a method
that directly incorporates this information in the underlying
optimization problem (1). The key to our approach is to extend
the original similarity metric to (i) account for segment-to-
segment attribute similarity and (ii) use knowledge of the
gravity direction when available.

First, we address the task of incorporating information from
segment attributes. For a putative associate ap = (pi, pj), let
so(ap) denote a similarity measure between the segments pi
and pj . While [10] suggests to set the diagonal entries of M
to reflect this information, e.g., by setting Mp,p = so(ap), this
similarity measure has a limited impact as the objective func-
tion value tends to be dominated by association-to-association
similarity terms (off-diagonals of M). Another solution from
[7] proposes multiplying the association affinity score by so(·)
so that Mp,q = sa(ap, aq)so(ap)so(aq). We find that although
this approach allows segment-to-segment similarity to play
a significant role in the registration problem, the elements
of M are skewed to be much smaller resulting in many
fewer accepted inlier associations. To incorporate segment-
to-segment similarity without significantly diminishing the
magnitudes of the entries of M, we instead propose using
the weighted geometric mean,

Mp,q = (sa(ap, aq)
wso(ap)so(aq))

1
w+2 (2)

where w can be used to balance the association similarity
score with the segment-to-segment similarity score. In our



implementation, we set w = 2 to balance the impacts of the
sa and so terms. For the segment-to-segment similarity, we
use

so(ap) =

(
K∏

k=1

min (fk(pi), fk(pj))

max (fk(pi), fk(pj))

)1/K

, (3)

where fk(pi) represents the k-th shape attribute of pi. In
this work, three shape attributes are used, which include the
segment volume together with the minimum and maximum
lengths of the oriented bounding box.

Next, we address implicitly incorporating knowledge of the
gravity direction in the global data association formulation.
Due to the geometric-invariant formulation of eq. (1), the
solver naturally considers registering object maps as a 6-
DOF problem. Often in robotics, with an onboard IMU the
direction of the gravity vector is well defined, and we are
instead interested in considering transformations with only x,
y, z, and yaw components. In this work, we propose a method
to leverage knowledge of the gravity direction within the data
association step, which guides the solver to select associations
that are consistent with the direction of the gravity vector.

To accomplish this, we propose a geometric invariant that
inherently represents prior knowledge of the gravity vector by
decoupling computations in the x-y plane and along the z axis:

sa(ap, aq) = exp

(
−1

2

(
d2xy(ap, aq)

2
3σ

2
+

d2z(ap, aq)
1
3σ

2

))
, (4)

where

dxy(ap, aq) = | ∥pi,xy − qi,xy∥ − ∥pj,xy − qj,xy∥ |
dz(ap, aq) = | (pi,z − qi,z)− (pj,z − qj,z) | .

It is important to note that we use the difference in the z-axis
since we have directional information from the gravity vector
while we only use distance in the x-y plane. The directional
information helps further disambiguate correspondence selec-
tion as opposed to merely decoupling x-y distance from z.

III. EXPERIMENT

We evaluate our method for performing global localization
in challenging multi-robot scenarios including robots travers-
ing off-road paths in natural environments and in opposite
directions. We compare the proposed method of using
shape attribute similarities and the gravity vector against
the following baselines. RANSAC-100K and RANSAC-1M
apply RANSAC [4], as implemented in [15], on segment
centroids with a max iteration count of 100,000 and 1 million.
CLIPPER runs standard CLIPPER [10] on segment centroids,
and CLIPPER + Prune further prunes registration results
using volume and gravity information (so it has access to
similar information as the proposed method). Additionally, we
introduce the following variants of our method for the purpose
of ablation. In Proposed w/o Shape, segment shape sim-
ilarity (i.e., so) is not used. Product and Arithmetic
Mean replace the geometric mean in eq. (2) with direct
multiplication and weighted average, respectively.
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Fig. 2: Precision vs recall plot comparing global localization methods
on submaps created from MIT campus robot data. The parameter for
minimum number of associated objects is swept to generate different
levels of precision and recall.
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Fig. 3: Percentage of correctly aligned submaps from 59 challenging
overlap cases. Along the x-axis, maximum allowed registration error
in both distance (top x-axis) and angle (bottom x-axis) are varied. The
proposed method computes the correct T̂i

j for 49% of the challenging
overlapping submaps with an error of less than 1.5m and 3 deg.

A. MIT Campus Global Localization

We first evaluate our method for aligning segment submaps
using the outdoor Kimera Multi Dataset [2] recorded at the
MIT campus. Maps are created using our segment mapping
pipeline along ground truth robot trajectories. The resulting
segments are grouped into submaps, where a submap includes
all 3D segments within a 20m radius and a new submap is
created every 10m. To demonstrate our global localization
algorithm, we select six events where robots paths overlap,
including three instances where robots travel in the same
direction and three challenging cases where robots cross paths
perpendicularly or travel in opposite directions to each other.

We compare our method for aligning 3D segment submaps
against baseline methods. Fig. 2 shows the combined
precision-recall performance for all six overlap events. We
require that the registration error of the computed T̂i

j must be
below 1.5m and 3 deg for the global localization estimate to
be accepted as correct. To generate the precision-recall curves,
we vary the threshold on the number of objects required for
each algorithm to accept a candidate alignment. The proposed
method achieves significantly higher precision-recall results
than baseline methods and does so with similar computation
times as seen in Table I.

To provide further insights on the registration accuracy,
we evaluate the ability of segment registration methods to



accurately estimate Ti
j given two overlapping submaps from

one of the three challenging configurations with opposite or
perpendicular viewpoints. Fig. 3 shows the total percentage of
correct T̂i

j from 59 evaluated pairs of submaps. Results show
that the proposed method computes accurate transformations
for 49% of overlapping submaps in these challenging scenar-
ios, where in comparison RANSAC-1M only correctly estimate
24% of these transformations with a runtime that is three times
slower. We additionally note that on average, each submap can
be represented with only 1.6 KB of data which is much more
efficient to communicate than visual feature descriptors.

TABLE I: Mean Submap Registration Timing Analysis

Method Time (ms) Method Time (ms)
RANSAC-100K 37.6 Proposed w/o Shape 42.6
RANSAC-1M 187.6 Product 45.4
CLIPPER 57.8 Arithmetic Mean 819.6
CLIPPER + Prune 22.5 Proposed 56.7

B. Off-road Global Localization

We further evaluate the proposed method’s ability to register
segment maps in an outdoor, off-road environment with high
visual ambiguity. We select overlapping submaps which were
created by two robots traveling in opposite directions using
Kimera-VIO [16] for ego localization. Fig. 1 shows two
submaps, separated for visualization, selected for qualitative
evaluation of our global localization method. In Fig. 4, we
qualitatively compare the computed T̂i

j from CLIPPER and
the proposed method by overlaying the submap created by
robot 1 and the submap created by robot 2 transformed by
T̂i

j . Due to considerable ambiguity in the scene, CLIPPER’s
T̂i

j is yawed about 180 deg from the true Ti
j while our method

harnesses the information from segment shape similarities and
the gravity vector to compute an accurate T̂i

j .

Fig. 4: Comparison of our proposed method (left) versus CLIPPER
(right). The submap created by robot 2 (marked in blue) was trans-
formed using the estimate T̂i

j . The x-y planes of each robot’s frames
are shown to demonstrate the quality of computed transformations.

IV. CONCLUSION

This work presented a method for performing global local-
ization in challenging outdoor environments by robust registra-
tion of 3D open-set segment maps. Associations between maps
were informed by geometry of 3D segment locations, segment
shape attributes, and direction of the gravity vector in segment
maps. Future work includes incorporating additional shape
information from learned shape descriptors for computing
shape similarity.
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