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Abstract—To date, mobile robotic gas distribution mapping
(GDM) platforms largely depend on remote operation. Automat-
ing these platforms eliminate the need for trained specialists on-
site and improve the performance of GDM. This paper addresses
the environment exploration-gas exploitation dilemma that arises
when attempting automation of GDM in unknown and cluttered
environments through a multi-objective informed tree planning
strategy. Assuming the frontier exploration techniques can be
employed to identify several potential destinations, we focus
on developing an anytime performance Multi-Informed Tree
(MIT) algorithm, building on the Batch Informed Trees (BIT*)
framework, to simultaneously construct information-driven paths
towards these goals. Gas exploitation in our problem is addressed
by these trajectories which are sampled from an underlying
Upper Confidence Bound (UCB) distribution generated from the
current gas map state. The path with the highest information
gain is subsequently selected for the robot to execute. When tested
against the popular RRT and RRT* algorithms, MIT consistently
achieves higher information gain in its evaluated trajectories. The
proposed strategy can be integrated into an informative path
planning (IPP) framework in the future work.

I. INTRODUCTION

Rapid and precise acquisition of situational information
during a hazardous gas release is crucial to emergency re-
sponses [1]. The raw information deemed most useful in
these scenarios are the gas concentration levels. To gather
this data, sending a human operator with a gas sensor is
not a viable option due to the life-threatening risks presented
by the hazardous plumes and uncertain environment. Instead,
mobile robotic platforms equipped with chemical sensors have
become more common [2], as they can navigate areas unsafe
for humans and endure more extreme conditions. However,
even with these platforms, interpreting gas measurements
remains challenging without tools to localise each reading and
create a gas distribution model. To address this, one popular
technique that has been widely adopted is Gas Distribution
Mapping (GDM). GDM aims to generate a map of the gas
concentration levels by collecting spatiotemporally distributed
chemical measurements over a region of concern [3]. With
such informative media at hand, first responders can then
correctly identify regions reporting higher gas concentrations
from which logical inferences regarding the presence of leaks
and their locations can be derived, allowing them to manage
the situation more safely and precisely.

At present, the mobile robot requires remote operation to
perform practical GDM [4, 5]. This setup, however, has certain
drawbacks. For instance, remote specialists need to be in close

proximity to the scene to ensure a quick response, which can
be a significant burden when lives are in danger. Additionally,
humans are not as capable of finding optimal, time-effective
paths to goal locations as established path planning algorithms
like A* or RRT* [6]. The incentive to incorporate autonomy
into GDM can therefore be attributed to the inconveniences
associated with teleoperation and the potential to optimise the
GDM procedure through path planning feedback.

This paper presents preliminary work towards the first
practical execution of autonomous mobile robotic GDM in
real-world conditions, that is, in unknown and cluttered envi-
ronments. To navigate these unknown terrains, we will utilise
simultaneous localisation and mapping (SLAM) functionality
within our robotic platforms. Similar to the active SLAM
problem [7], closing the loop for active GDM by supplying
feedback on where the agent should next visit, presents a
dilemma. At any instance, the robot must decide whether to
prioritise destinations that enhance its understanding of the
current gas distribution within familiar areas or explore new
territories where gas dispersion might be more significant. To
address the challenge of balancing environment exploration
and gas exploitation, we opt to select multiple frontier points
rich in information for the robot to potentially navigate to-
wards. Subsequently, informed paths will be generated towards
these points to exploit the gas. To achieve this, we extend
the BIT* algorithm [8], originally designed for finding an
informed path to a single destination, to facilitate the simulta-
neous construction of these paths towards multiple locations.
This is accomplished by sampling from a UCB distribution of
the current gas map (shown in Fig. 1) that we also introduce to
guide the tree-building process for the GDM application. The
trajectory with the highest accumulative UCB gain per distance
travelled is then executed by the robot. It should be noted that
unlike Gammell et al. [8], our method does not initiate another
sampling batch upon completing one. This is because we are
not interested in finding the shortest path towards each frontier
region, but only some admissible informed ones.

With the recent introduction of the Gaussian Belief Prop-
agation (GaBP) factor graph solver, coupled with a novel
hybrid message scheduling system, robotic GDM platforms
can now perform real-time inference updates while accounting
for uncertain and obstacle rich conditions [5]. We plan to
leverage this solver for a Gaussian Markov Random Field
(GMRF) gas representation, initially proposed in [3], to ensure
real-time application in our wider autonomous GDM study.



Fig. 1. The synthetic obstacle-rich GDM scenario used in this study depicting
a snapshot of the UCB distribution derived from the latest gas map mean and
uncertainty states. The start point indicates the current position of the robot
and each goal point mimics a frontier location that would be provided from
an external frontier detection function.

Our first contribution, and the focus of this in-progress
paper, is the development of the MIT algorithm and its
application to GDM. We demonstrate, through early simulation
results, its superiority over the popular RRT and RRT* algo-
rithms in obtaining information-rich paths to goals in a static
hazardous gas release scenario revealed in Fig. 1. However,
first, we provide an overview of related work in autonomous
GDM to contextualise our contribution.

II. RELATED WORK

Previous studies on autonomous GDM, recognised as an IPP
problem, often suffer from incompleteness or impracticality in
terms of attaining a fully automated system capable of address-
ing real-world hazardous release scenarios. For instance, the
sensor-simulated (non-robot) IPP study in [6] and the novel
K-means clustering solution proposed in [9] perform GDM
under a predetermined OGM. A mobile robot however, when
faced with a new scene, will not have access to such prior
knowledge; the robot must build its own OGM using SLAM.

Strategies that involve the sequential execution of paths to
locations evaluated by cost functions that only consider gas
map states, such as those tested in [6], do not produce func-
tional solutions, especially when the underlying OGM requires
real-time construction. In these cases, sub-optimal behaviour
often manifests as a repetitive loop between two high-cost
regions that the robot continuously revisits, resulting in a lack
of further exploration and exploitation of the gas distribution
beyond this pattern. Gongora et al. [10] address this matter
and propose an information-driven infotaxis strategy for gas
exploration, but SLAM is still not included, and their POMDP
IPP framework struggles to scale computationally with their
GW-GMRF GDM function for real-time performance.

Sampling strategies for real-world applications should ac-
tively infer both gas map and SLAM information to achieve

a practical and effective solution as the problem is not only
to exploit the gas but also to explore the environment. Studies
like [11], which attempted such work, fell short of practical
success in complex, obstacle-tight environments because of
their use of the Kernel DM+V GDM function. The compu-
tational demands of this function left little room for higher-
quality path planning, path following, and SLAM algorithms
to be implemented. To elaborate, their sampling strategy
involved switching between a gas exploitation state and an
environment exploration state, during which frontiers would be
visited. However, they struggled to achieve an intelligent way
to switch between these states without introducing incident-
specific tuning parameters.

III. FORMULATION AND APPROACH

Let the state space for the IPP problem be defined as
X ⊂ R2, Xobs ⊂ X be the states obscured by obstacles, and
Xfree := X \Xobs be the admissible states. Let xk ∈ Xfree

be the robot location at sampling time k.
Let σk+1

k be a collision-free path executable by the robot
starting from xk and closing at xk+1, defined as σ : R →
Xfree. Let the set Σ contain such paths towards a set of goal
regions, Xgoal ⊂ Xfree, that exists for each frontier. The IPP
problem is defined as finding a path σ∗ ∈ Σ that maximises a
utility function Ψ(·), so that

σ∗ := argmax
σ∈Σ
{Ψ(σ) |σ(0) = xk} (1)

The notation used in the next sections is consistent with that
of the original BIT* paper [8] and is not repeated here.

A. Initialisation (Alg 1, Lines 1:7)

Alg 1 begins by generating N samples through the informed
UCB distribution shown in Fig. 1, given by:

UCB(x, y) =
µ(x, y)

max(x′,y′)∈G µ(x′, y′)
+ λ · ϵ(x, y), (2)

where µ(x, y) and ϵ(x, y) are the latest mean gas concentration
and uncertainty, respectively, obtained from the GDM function
at coordinates (x, y), λ is a weighting parameter, and G is the
continuous domain of the environment.

It then defines the goal states, xgoals, leveraging the external
frontier detection function, E(δ(k)s ). Each goal state, xgoal, is
allocated to a corresponding goal set, Xgoal, comprising the
kn closest instances of x ∈ G. Next, the root node, xk, is used
to initialise the tree’s vertex set, V , and the vertex queue, Qv ,
while both the tree’s edge set, E, and the edge queue, Qe,
start empty. The Lebesque measure is then defined in a manner
similar to [8] to help calibrate an appropriate radial boundary
for edge search (Alg 1, Line 7).

B. Multi-Goal Tree Expansion Procedure (Alg 1, Lines 8:28)

The tree expands until Qv is empty or a feasible path to all
Xgoals is established. The expansion is processed incrementally
for each Xgoal, as delineated from line 9 of Alg 1. If a feasible
path to a particular Xgoal is already established, indicated by



Algorithm 1: Multi-Informed tree expansion
(N, xk, λ, δs)

1 G← sample(N,λ) // from Eq.(2)

2 xgoals ← E(δ(k)s )
3 for xgoal in xgoals do
4 Xgoal ← {arg min

x ∈ G
∥xgoal −X∥2 | |X| = kn}

5 Xgoals
+← Xgoal

6 V ← xk;E ← ∅;Qe ← ∅;Qv ← V

7 r ← 2k(1 + 1
n )

1
n

(
λ(X̂f )
ξn

) 1
n
(

log(|G|)
|G|

) 1
n

8 while Qv ̸= ∅& gτ (x) ∈ Xgoals =∞ do
9 for Xgoal in Xgoals do

10 if Qv ̸= ∅& gτ (x) ∈ Xgoal <∞ then
11 continue
12 else
13 vm ← arg min

x∈Qv

gτ (x) + ĥ(x)

14 Qv
−← vm

15 Vnear ← {w ∈ G | ∥vm − w∥2 ≤ r}
16 Qe

+← {(vm, w) ∈ Vnear}
17 while Qe ̸= ∅ do
18 wm ← arg min

w∈Qe

ĉ(vm, w) + ĥ(w)

19 Qe
−← (vm, wm)

20 if gτ (vm) + ĉ(vm, wm) ≤ gτ (wm) then
21 if gτ (vm) + c(vm, wm) ≤ gτ (wm)

then
22 if wm ∈ V then
23 E

−← {(v, wm) ∈ E}
24 else
25 V

+← wm

26 Qv
+← wm

27 E
+← (vm, wm)

28 return (V,E)

gτ (x) ∈ Xgoal < ∞, the algorithm proceeds to the next
goal region without further action in the current iteration.
Otherwise, the expansion continues to explore potential paths
towards any unachieved Xgoal sets (Alg 1, Lines 13:27).
Adopting a simultaneous goal system enables users to opt for
early termination of the programme, while guaranteeing the
generation of a tree that extends branches towards all Xgoals.
As a result, anytime performance characteristics are embedded
in the algorithm, thus facilitating flexible execution and the
prompt delivery of partial solutions if necessary.

In the absence of a feasible path to an Xgoal, the strategy
unfolds by selecting the state x ∈ Qv with the lowest current
tree cost-to-come plus heuristic cost-to-go, denoted as the ex-
pansion node, vm (Alg 1, Line 13). Incorporating the vertex’s

tree cost-to-come into the sorting mechanism guarantees the
best available information is directing the branch construction
process. The state corresponding with the chosen vm is then
removed from Qv . The group Vnear is formed around the
expansion node by including all states w ∈ G that fall inside
the radius, r, of vm. Connections from each w to vm are
subsequently queued into Qe.

Once Qe is populated with potential edges, the edge pro-
cessing procedure begins by identifying the w within Qe that
offers the minimal estimated cost pathway from vm to the clos-
est state within Xgoal via w (Alg 1, Line 18). Subsequently,
this selected edge is extracted from Qe. Admission of the edge
into the tree is conditional on compliance with the conditions
in Alg 1, Lines 20:21. If wm is yet to be added to the
tree, compliance is guaranteed as gt(wm) will evaluate to ∞.
Following this scenario, wm will be added to both the vertex
set V and the vertex queue Qv (Alg 1, Lines 25:26), with the
edge (vm, wm) being included in the edge set E (Alg 1, Line
27). Should wm already be part of the tree, a rewiring process
may occur, entailing the removal of the previous edge (v, wm)
(Alg 1, Line 23) and the integration of the new edge (vm, wm)
(Alg 1, Line 27). This occurs provided that the cost to arrive to
vm plus the actual cost (accounting for collisions) c(vm, wm)
is lower than the existing cost to reach wm. As per the notation
in [8], if a collision is encountered, c(vm, wm) evaluates to
∞. Notably, the computation of c(vm, wm), which can be
resource-intensive due to collision assessments, is strategically
delayed as per Alg 1, Line 20. Here, an initial evaluation of
the estimated cost, ĉ(vm, wm), ascertains if progressing to the
collision cost analysis in the following line is warranted.

IV. EXPERIMENTAL RESULTS

The polluted and obstacle-rich scenario depicted in Fig. 1
is utilised to assess the performance of the MIT algorithm in
finding informed paths towards each synthetic frontier. The
information metric used to evaluate each trajectory is given
by:

Ψ(σ) ≈ 1

nz

nz∑
l=1

ŵ
(σ,l)
k+1 (3)

Here, Ψ(σ) represents a trajectory’s utility, calculated as
the average of UCB values across all visited cells l along
trajectory σ at time k+1. The parameter nz denotes the total
number of cells covered by trajectory σ. Each ŵ

(σ,l)
k+1 signifies

the estimated UCB value, as defined in Eq. (2), associated
with the lth cell on trajectory σ.

The MIT algorithm is initalised with the parameters N =
270, λ = 1 and kn = 3 for the experiment, with Euclidean
distance heuristics utilised between its states. To compare its
performance with that of the popular RRT and RRT* algo-
rithms, the same objectives were assigned to each algorithm.
Since both RRT and RRT* are of 1 sample/batch nature, their
respective parameters were adjusted fairly to ensure a similar
total number of sampling points and termination criteria as the
MIT algorithm. The results of 250 Monte Carlo simulations
demonstrate that MIT is significantly more effective in finding



(a) (b) (c)

Fig. 2. An example of the most typical trajectories generated by MIT is shown in (a), and for RRT in (b). Notably, the most typical trajectories for RRT*
are similar to those shown in the RRT example; therefore, a separate RRT* snapshot is not included here. Each trajectory that finds frontiers 1, 2, and 3, as
defined in Fig. 1, is represented by the colors orange, cyan, and magenta, respectively. The green circles in (b) represent the termination radii used by both the
RRT and RRT* methods. Trajectories from these methods conclude their tree construction tasks upon reaching each of the three regions. Finally, (c) provides
a clear depiction of the information gain (UCB per distance) achieved on average for each trajectory and algorithm from the 250 Monte Carlo simulations.

valuable paths to goal locations (see Fig. 2c). In Fig. 2a, an
example of common paths found by MIT is depicted, while
Fig. 2b illustrates those for RRT (and RRT*), revealing their
tendency to prioritise the fastest paths towards goals due to the
absence of informed sampling. Table I shows that only MIT
evaluated trajectory 3, the best candidate trajectory according
to Fig. 2c, more frequently than the other two trajectories.

TABLE I
PERCENTAGE OF SIMULATIONS WHERE MIT, RRT, AND RRT* IDENTIFY

EACH TRAJECTORY AS HAVING THE HIGHEST INFORMATION GAIN.

Trajectory 1 Trajectory 2 Trajectory 3

MIT 21.6% 8.8% 69.6%
RRT 6.4% 56.0% 37.6%
RRT* 12.0% 47.6% 40.4%

V. CONCLUSION

A strategy for realistic autonomous GDM has been pro-
posed to balance the exploration-exploitation dilemma faced
by a robot with no prior knowledge of its surroundings. Our
contribution in this ongoing paper, presented as the MIT
algorithm, extends BIT* to form informed trajectories towards
multiple destinations simultaneously, fostering the generation
of numerous potential paths for evaluation. Within our strategy,
these destinations are identified as frontiers, motivating the
robot to navigate towards exploration-rich regions. The tree is
constructed following batch sampling from a UCB distribution
of the current GDM states, which ultimately guides the trajec-
tories in an informed manner to these destinations, ensuring
effective gas exploitation along the way. Experimental results
show that MIT consistently outperforms RRT and RRT*
in finding more informed paths to the frontiers within the
static hazardous gas release scenario used for this study. The
next step is to implement the algorithm in a more complex

simulation setting that incorporates the GaBP-GMRF function
to simulate GDM, and to integrate real frontiers extracted from
SLAM.
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