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Abstract—Under-canopy agricultural robots have shown the
potential to enable precise crop monitoring, weeding, spraying,
cover crop planting, and plant manipulation tasks without
soil compaction. Autonomous navigation under the canopy is
challenging due to the tight space available to navigate, frequent
occlusion of sensors, and large variability in the appearance of the
environment. Prior work focused on developing a learning-based
perception system with semantic keypoints for robust under-
canopy navigation. Though they demonstrated robust navigation
in diverse field conditions, the system is limited by the inability
to use failure data and self-improve. We propose CropFollowRL,
a real2sim2real system to train a learning-based controller in
simulation with reinforcement learning using semantic keypoints
as an abstraction. Our evaluation in various simulation envi-
ronments indicates that our learned controller generalizes well
directly to some environments in terms of distance traveled before
collisions and shows significant improvement after finetuning in
several other environments which indicates potential for sim2real
transfer and real-world deployment.

I. INTRODUCTION

Under-canopy agricultural robots can enable applications
such as ultraprecise crop monitoring, weeding, spraying, and
cover crop planting which is not possible with existing over-
the-canopy equipment like tractors and aerial vehicles [4]. Au-
tonomous navigation under the plant canopy is challenging due
to the tight space to navigate between the crop rows (around
17cms of error margin on either side of the robot), inaccuracy
in RTK GPS from multipath error, frequent sensor occlusion
from leaves, and the large variability in the environment due
to changing plant, soil, and weed growth conditions.

Earlier works in under-canopy navigation used 2D Li-
DAR for perception with classical line fitting approaches [3].
Though this approach works in clean fields with less occlusion
and weed growth, it suffers from the lack of semantic infor-
mation in the sparse point cloud to distinguish the crop rows
from occluding leaves and weeds. Visual navigation is a better
alternative because of the rich semantic information of the
scene captured in the images. However, the classical approach
of vision-based row following using segmentation and line
fitting requires frequent manual tuning of parameters to deal
with the variability in the environment. Learning-based visual
navigation can help overcome this challenge but the question
becomes: What is the learned output representation from
images that enables robust under-canopy visual navigation?

CropFollow [7] and CropFollow++ [6] showed successful
demonstrations of learning-based under-canopy visual naviga-

Fig. 1: Under-canopy navigation is challenging due to the tight
space to traverse between the crop rows, frequent occlusion,
and large variability in the appearance of the environment.

tion systems over large distances in diverse field conditions.
CropFollow used an end-to-end perception learning approach
and directly predicted the states of the robot (heading angle
and distance ratio) from the input monocular RGB image.
CropFollow++ showed improved robustness by using semantic
keypoints as the predicted output representation. The vertices
of the triangle formed on the image by the crop row lines
and the bottom of the image are the three semantic keypoints.
The improved robustness is enabled by adding heuristics that
use the uncertainty of the predicted keypoint heatmaps and the
known structure of the environment.

Though CropFollow++ showed deployment on multiple
under-canopy robots over 25kms, it is limited by the lack
of self-learning capability to improve its performance from
failures (collision with plants). This is because of the clas-
sical model predictive controller (MPC) that is used in this
system. Despite the rich information predicted in the key-
point heatmaps, only the maximum intensity pixel coordinates
are used to calculate the states (heading angle and distance
ratio) used in MPC which is restrictive. We hypothesize
that a learning-based differentiable controller with keypoint
heatmaps as input can exploit all the information in the
heatmaps to enable improved navigation performance and can



Fig. 2: CropFollowRL overview. We first train the perception neural network that predicts semantic keypoints with real-world
data. We then transfer this perception system to simulation and train a neural network controller using TD3 off-policy RL
algorithm. We propose to transfer this controller for real-world deployment using fine-tuning with small amount of real world
data.

also have the self-learning capability to improve from failures
using reinforcement learning (RL).

Because of the limitation of large sample complexity in
model-free RL algorithms, we propose to use a real2sim2real
approach similar to [5]. We use the keypoint prediction model
trained in CropFollow++ as an abstraction to train an RL
controller in simulation and transfer this learned policy to the
real world. In this initial work, we show successful training
of the proposed keypoint heatmap-based policy using Twin
Delayed Deep Deterministic Policy Gradient (TD3) off-policy
RL algorithm [2] in simulation. In real-world under-canopy
environments, the movement of the robot along the crop rows
and the collision with plants are the only reliable sources
of reward/feedback. We train our proposed controller using
only this feedback in one simulation environment. Our eval-
uation results in simulation show that our learned controller
generalizes well to some environments directly and in some
other cases it shows significant improvement after minimal
finetuning indicating potential for real-world deployment.

II. CROPFOLLOWRL OVERVIEW

Our proposed architecture consists of two modules - a
perception system trained to predict three semantic keypoints
and a learning-based controller that uses the semantic keypoint
heatmaps as input and outputs linear and angular velocity ac-
tion commands. We use the same semantic keypoint prediction
network from CropFollow++ [6] which is trained on a large
and diverse real world under-canopy dataset. We transfer this
perception system to simulation and train a neural network-

based controller with TD3 off-policy RL algorithm. We eval-
uate this trained controller in various other crop environments
in simulation with and without fine-tuning. These modules are
explained in detail below.

A. Perception with semantic keypoints

Our perception system is a fully convolutional network that
takes as input an RGB image and outputs three semantic
keypoints corresponding to the vertices of the triangle formed
on the image by the crop row lines and the bottom of the
image. The output heatmaps are 1/4th the spatial resolution of
the input image. A spatial softmax layer is applied to the final
layer.

B. RL controller training in simulation

We use a gazebo environment with simulated plants to
train the RL controller. We use one type of corn plant as
a training environment and seven diverse validation environ-
ments (comprised of two types of corn plants, three types of
sorghum plants, and two types of tobacco plants). We transfer
the perception system to simulation to predict the keypoint
heatmaps. Note that this perception network remains frozen
and its weights are not updated while training the controller.

1) TD3 algorithm: We use TD3 off-policy RL algorithm
to train the controller. TD3 is used in environments with
continuous action spaces like our problem setting. It builds
on the Deep Deterministic Policy Gradient (DDPG) algorithm
with a few modifications to address some of the issues in
DDPG. It uses two Q-functions instead of one in DDPG to



minimize the issue of overestimation bias. The Bellman error
to update the Q-functions is formulated by treating the smaller
of the two Q-values as the target. Since TD3 is a deterministic
algorithm, a noise distribution is added to the action to enable
exploration during training. The action with added noise is
clipped to ensure the actions are within the bounds. Also, TD3
updates the policy network less frequently than Q-function
networks.

2) Network architecture and training: Our actor network
and two Q-function networks use fully connected layers. The
three keypoint heatmap outputs are flattened to a vector of
13440 dimensions and the action from the previous time step
is concatenated to this to create a 13442 dimensional state
vector. A tanh activation layer is used in the output of the
actor network. We adapt the TD3 implementation from [1]
for our problem.

To train this policy network, we use the collision with
plants as a negative reward and the distance traveled along
the length of the crop rows as a positive reward. The full
reward expression rt can be visualized in figure 1:

rt =

{
−100 if collision
−3 · |vx − 1| − |wz|+ δx

10 otherwise
(1)

The reward function rt is associated with action at. The
expression depends on linear velocity vx, angular velocity wz

around the z-axis, and δx, which signifies movement along the
x-axis. We made this choice for the reward since these are the
only reliable sources of feedback available during real-world
deployment in under-canopy conditions.

We use a corn plot simulated with one type of corn plant
model as our training environment.

Fig. 3: We visualize the RGB image and the corresponding
keypoint heatmap for a sample image from the environment
used for training the RL controller.

III. PRELIMINARY RESULTS AND DISCUSSION

We trained the above-mentioned policy network with TD3
algorithm in one corn environment until convergence of av-
erage Q-value (shown in Fig. 4). To evaluate this policy, we
chose seven diverse environments available to us in simulation
corresponding to two types of corn plants, three types of
sorghum plants and two types of tobacco plants. Fig 5. shows
the RGB image and the corresponding keypoint heatmaps
(superimposed on the input RGB image) for a sample image
from each validation environment. The varying levels of noise
in the keypoint heatmaps as seen in this visualization is an

Fig. 4: Average Q-value during training in the corn simulation
training environment is shown here. We can see the conver-
gence of the average Q-value at the end of training.

indicator of the varying difficulty in generalization for the
trained controller.

A. Evaluation Metric

We used the distance traveled before the collision as the
quantitative metric for evaluation. We first calculated this
metric by evaluating the generalization performance of the
policy trained in one corn environment. We then also fine-
tuned this policy to each validation environment with a small
amount of data and recalculated the same metric.

B. Validation Results

Fig 6. shows the distance traveled before collision before
and after fine-tuning for all seven validation environments
mentioned above. Based on the results in Fig 6. there are three
types of environments:

• The controller trained in one corn environment directly
generalizes well (more than 30m traveled before the
collision). Sorghum #1 environment belongs to this cate-
gory. This indicates that the distribution of input keypoint
heatmaps is similar in the training environment and
this validation environment. We also see only minimal
improvement in the metric after finetuning.

• The trained controller does not show good performance
during evaluation indicating lack of generalization. How-
ever, after finetuning, there is a significant improvement
in the distance traveled before the collision. Corn #1,
Corn #2, and Tobacco #2 belong to this category. Among
these, Corn #1 especially shows a significant jump in
performance after finetuning (from 9.07m to 25.44m) The
lack of good performance could be due to a shift in the
distribution of input keypoint heatmaps to the controller.
But the heatmaps might still contain useful information
for control and hence the jump in performance after
finetuning.

• The validation performance is poor before as well as after
finetuning (Sorghum #2, Sorghum #3, Tobacco #1). This
might indicate that the keypoint prediction module trained
with only real-world data might not be generalizing well



Fig. 5: We visualize the RGB (top row) and corresponding keypoint heatmaps (bottom row) for a sample image from each of
the evaluation environments in simulation. The first two columns represent corn, columns 3-4 represent sorghum and the last
two columns represent tobacco. Note the varying levels of noise in the heatmap across these different environments.

to these simulation environments and hence the predicted
keypoint heatmaps do not contain enough information for
the controller to learn a good mapping from heatmap
space to action space.

Our results in the second category of environments show
great potential for sim2real transfer by fine-tuning with a small
amount of data. As long as the predicted keypoint heatmaps
contain useful signal, our proposed RL system can be used to
self-improve during operation in real fields.

Fig. 6: Distance traveled before collision in meters for various
evaluation environments simulation before and after minimal
fine-tuning. The significant increase in distance after fine-
tuning can be seen in three of the seven environments.

IV. CONCLUSION

We have demonstrated the feasibility of training a learning
based policy for under-canopy navigation with RL using
only the reliable sources of reward available in real field
conditions. Our preliminary results in simulation show promise
for sim2real transfer and self-improvement in the real world.
Further work exploring other choices of network architectures,
off-policy algorithms and finetuning the policy network can
improve the performance of the proposed system.
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